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INFLUENCE OF SOLAR RADIATION PRESSURE ON 

ORBITAL ECCENTRICITY O F  A GRAVITY-GRADIENT-ORIENTED 

LENTICULAR SATEUITE 

By W i l l i a m  M. Adams, Jr., and Ward F. HoQe 
Langley Research Center 

A method i s  presented f o r  calculat ing t h e  perturbations of t he  o r b i t a l  
elements of a low-density l e n t i c u l a r  s a t e l l i t e  due t o  s o l a r  radiat ion pressure. 
The necessary calculations a re  performed by means of t he  d i g i t a l  computer. Typ- 
i c a l  r e su l t s  a r e  presented f o r  seven o r b i t a l  incl inat ions ranging from 0' t o  
ll3O f o r  a per fec t ly  absorptive s a t e l l i t e  i n i t i a l l y  i n  a nearly c i r cu la r  2,000- 
nautical-mile o r b i t .  

The information obtained indicates  t h a t  t h e  change i n  eccent r ic i ty  caused 
by so la r  radiat ion pressure becomes large enough f o r  a l l  t h e  inc l ina t ions  con- 
sidered t o  cause at t i tude-control  problems with t h e  gravity-gradient s tab i l iza-  
t i o n  system. 
l i t e s  since the  abi l i ty  of gravi ty  gradient a t t i t u d e  control  systems t o  damp 
the  pi tching l i b r a t i o n  induced by e l l i p t i c  o r b i t a l  motion i s  s t i l l  i n  doubt. 
The r e su l t s  a l so  indicate  t h a t  the  e f f ec t s  of so l a r  radiat ion pressure on t h e  
o r b i t a l  eccen t r i c i t i e s  o f  l en t i cu la r  and spherical  s a t e l l i t e s  a re  nearly the  
same when the  t w o  configurations a re  compared on an equal area-mass r a t i o  
bas i s .  

A nearly c i r cu la r  o rb i t  appears necessary f o r  l en t i cu la r  s a t e l -  

INTRODUCTION 

The s a t e l l i t e  systems current ly  being considered as a means of es tabl ishing 
worldwide communications networks include passive r e f l ec to r s  such as Echo-type 
in f l a t ab le  balloon s t ructures .  
of satellite, economic considerations make it desirable  t o  increase t h e  usable 
r e f l ec t ing  area per un i t  w e i g h t  i n  o r b i t  over t h a t  of t h e  Echo sphere. In f l a t -  
able  l e n t i c u l a r  configurations o f f e r  t h e  poss ib i l i t y  of obtaining a communica- 
t i o n s  surface equivalent t o  t h a t  provided by a sphere of equal radius at a 
s izable  reduction i n  satel l i te  m a s s .  However, a l e n t i c u l a r  sa te l l i te  requires 
a t t i t u d e  control  s ince i t s  symmetry ax is  mus t  be continuously oriented p a r a l l e l  
t o  t h e  l o c a l  v e r t i c a l  along i t s  o r b i t a l  path i n  order t o  function properly as 
a passive communications l i nk .  

It i s  shown i n  reference 1 t h a t  f o r  t h i s  type 



Damped gravity-gradient systems s i m i l a r  t o  t h a t  described i n  reference 2 
are being considered as a passive means of providing t h e  necessary a t t i t u d e  
control.  However, t h e  use of such systems requires a nearly c i rcu lar  o rb i t  t o  
prevent t h e  pi tching l i b r a t i o n  of t h e  s a t e l l i t e  t h a t  i s  induced by eccentr ic  
o r b i t a l  motion from causing unstable a t t i t u d e  motion. 
For t h e  la rge  area-mass r a t i o  required t o  achieve a s igni f icant  w e i g h t  reduc- 
t ion,  t h e  satel l i te  i s  subject t o  strong perturbations due t o  so l a r  radiat ion 
pressure. 
spherical  s a t e l l i t e s .  I n  most instances, t h e  pr inc ipa l  
e f f ec t  i s  a large-amplitude var ia t ion  i n  t h e  o r b i t a l  eccent r ic i ty  which can 
shorten s a t e l l i t e  l i f e t imes  appreciably and can cause d i f f i c u l t y  i n  maintaining 
t h e  uniform spacing between satellites t h a t  i s  necessary f o r  continuous com- 
munications service.  Since these problems would be expected f o r  any s a t e l l i t e  
having a l a rge  area-mass ra t io ,  t h e  problem of i n t e r e s t  here i s  whether so l a r  
radiat ion pressure w i l l  cause the  o r b i t a l  motion of a low-density l en t i cu la r  
s a t e l l i t e  t o  become su f f i c i en t ly  eccentr ic  t o  render gravity-gradient a t t i t u d e  
s t ab i l i za t ion  inef fec t ive .  

(See refs. 3 and 4.)  

These perturbations have been widely invest igated f o r  low-density 
(See refs. =j t o  12.)  

A primary consideration i n  invest igat ing t h i s  problem i s  the  large e f f ec t  
t h e  s a t e l l i t e ' s  op t i ca l  and physical propert ies  can have on the  vector charac- 
t e r  of t h e  resu l tan t  force  exerted on it by so la r  radiat ion pressure. These 
parameters can vary t h e  d i rec t ion  of t h e  resu l tan t  force  r e l a t i v e  t o  t h a t  of 
t h e  incident force and can a l t e r  t he  magnitude of t h e  resu l tan t  force from zero 
f o r  an idea l  t ransmi t te r  t o  twice t h a t  of t h e  incident force f o r  a perfect 
specular re f lec tor .  Thus, t h e  choice of materials and construction of t he  
s a t e l l i t e  surface can a l te r  the  nature of t h e  problem considerably. 

Although it may eventually prove possible t o  e f fec t ive ly  avoid so l a r  pres- 
sure perturbations by using mesh materials or some other  means, it i s  currently 
of i n t e re s t  t o  e s t ab l i sh  how severe t h e  problem i s  f o r  a l e n t i c u l a r  s a t e l l i t e  
having a continuous so l id  surface. O f  these types of surfaces, t h e  perfect  
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Figure 1.- Lenticular satel- 
lite configuration. 

absorber appears most desirable  unless su i tab le  
materials t h a t  a r e  highly transmissive are devel- 
oped. 
c a l  i dea l  absorber by so la r  radiat ion pressure 
and the  magnitude of t h e  resul tant  force i s  the  
minimum f o r  any type of opaque surface. 
these reasons, it w a s  decided t o  assume a per- 
f e c t l y  absorptive s a t e l l i t e  f o r  t h e  study 
described i n  t h e  present report .  
s implif ies  t h e  calculat ion of so l a r  pressure 
perturbations considerably and permits t h e  
best  comparison with t h e  sphere. 

No net torques are exerted on a symmetri- 

For 

This approach 

The results contained i n  t h i s  report  were 
calculated f o r  t h e  77O-pound, 200-f oot -radius 
l e n t i c u l a r  s a t e l l i t e  i l l u s t r a t e d  i n  f igure  1. 
Data f o r  seven o r b i t a l  inc l ina t ions  were cal- 
culated by means of numerical integrat ion on the  
d i g i t a l  computer f o r  a 2,000-nautical-mile c i r -  
cu la r  o rb i t .  Corresponding da ta  f o r  a sphere 
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are a l so  presented for two of t h e  seven cases. Since resonances which can 
occur for cer ta in  or ientat ions of t h e  orb i t  plane r e l a t i v e  t o  t h e  disturbing 
force can produce t h e  l a rges t  changes i n  eccentricity,  it i s  important t o  
examine t h e i r  e f f ec t s  on t h e  o r b i t a l  motion of l e n t i c u l a r  s a t e l l i t e s .  For t h i s  
reason, t h e  seven incl inat ions used i n  t h e  study were chosen t o  include some of 
t h e  resonant conditions t h a t  might be encountered. 

SYMBOLS 

B a r s  appearing over symbols denote vectors t h e  magnitudes of which are 
indicated by omitting the  bars .  I n  instances where more c o q a c t  notation i s  
desirable,  a dot placed above a symbol i s  used t o  denote d i f f e ren t i a t ion  with 
respect t o  t i m e .  
occur i n  t h e  t e x t  and are not included i n  t h e  following l is t .  

Symbols used for spec ia l  purposes are defined where they 

area, cm 2 

coeff ic ient  of second harmonic i n  ear th’s  grav i ta t iona l  potent ia l ,  
km2 

semi-major axis, cm o r  km 

semi-minor axis, cm o r  lan 

eccentr ic  anomaly, deg 

eccent r ic i ty  

accelerat ion vector, cm/s ec2 

o rb i t  inc l ina t ion  with respect t o  equator, deg 

un i t  vectors along t h e  X, Y, Z axes ( see  f i g .  4) 

m a s s ,  gm 

mean motion, deg/day 

u n i t  vectors along o rb i t  axes (see f i g .  4) 

r d i a t i o n  pressure, dynes/cm2 

radius, cm or  km 

time, days 

un i t  vector from center of ear th  t o  sun 

geocentric rectangular coordinates (see f ig .  4 )  
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a, 

angle between satel l i te  symmetry axis and d i rec t ion  t o  sun, deg 

semi-central cone angle of lens,  deg (see f i g .  3 )  

E obliquity, deg 

e t r u e  anomaly, deg 

h true longitude of sun on ec l ip t ic ,  deg 

Cr product of universal  g rav i ta t iona l  constant and mass of earth, 
km3 /day2 

D right ascension of ascending node, deg 

u) argument of perigee, deg 

Subscript : 

0 reference condition 

PROCEDURE 

The computational method and assumptions used i n  calculat ing t h e  radiat ion 
pressure perturbations f o r  a perfect ly  absorptive l en t i cu la r  s a t e l l i t e  a r e  pre- 
sented i n  t h i s  sect ion of t he  report .  I n  order t o  perform t h e  desired calcula- 
t ions ,  it i s  necessary t o  account f o r  t h e  var ia t ion  of t he  so la r  disturbing 
force t h a t  arises because the  e f fec t ive  area-mass r a t i o  i s  not constant f o r  
l e n t i c u l a r  s a t e l l i t e s .  
i s  obtained i n  closed ana ly t ica l  form. The r e s u l t  i s  then used t o  modify, f o r  
appl icat ion t o  l en t i cu la r  configurations, an ex is t ing  d i g i t a l  computer program 
( L i f e t i m e  18) developed at the  NASA Goddard Space Fl ight  Center. This program 
calculates  t he  radiat ion pressure perturbations by numerical solut ion of t he  
d i f f e r e n t i a l  equations r e l a t ing  t h e  t i m e  var ia t ions  of t he  s a t e l l i t e ’ s  o r b i t a l  
elements t o  the  so l a r  disturbing force.  

A sui table  mathematical expression for t h i s  var ia t ion  

Assumptions 

I n  addition t o  assuming a perfect  black body absorber of t he  incident 
radiation, t h e  following general  assumptions were made: 

(1) I n  comparison with t h e  d i r ec t  rad ia t ion  from the  sun, the  t o t a l  force 
a r i s ing  from a l l  other  sources of radiat ion i s  small and i s  considered negli- 
g ib l e  f o r  t h e  purposes of t h i s  report .  

(2 )  Emission by the  s a t e l l i t e  surface i s  assumed t o  occur i so t ropica l ly  
so t h a t  t h e  force due t o  reradiat ion i s  a l s o  negligible.  
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( 3 )  The s a t e l l i t e  i s  considered t o  have constant m a s s  and t o  be suffi- 
c i en t ly  r ig id  so t h a t  var ia t ions  i n  the  dis turbing force due t o  deformation and 
e f f e c t s  caused by e l a s t i c  f lexing may be ignored. 

(4)  The e f f ec t s  of atmospheric drag may be ignored f o r  t h e  2,000-nautical- 
mile a l t i t u d e  used i n  t h e  study. 

( 5 )  The so la r  pressure forces  on the  a t t i tude-cont ro l  system and any asso- 
c ia ted  damper and support booms a re  assumed t o  be negl igible  i n  comparison with 
t h a t  exerted on t h e  main l e n t i c u l a r  portion of t he  s a t e l l i t e .  

( 6 )  Atti tude disturbances from all sources are t r ea t ed  as short-period 
terms i n  t h e  dis turbing function which tend t o  average out, and therefore  
would not be expected t o  a l t e r  appreciably t h e  o r b i t a l  motion. (See r e f .  5 . )  

Analytical  Representation of t he  Solar Disturbing Function 

The dis turbing accelerat ion caused . .. - ___ by . . . . so la r  - . rad ia t ion  pressure. - The force 
exerted on a p e r f e c t l y  absorptive body by so la r  rad ia t ion  i s  analogous t o  t h a t  
a r i s ing  from f l u i d  pressure.  The accelerat ion produced by t h i s  force i s  

where p i s  t h e  in t ens i ty  of t he  radiat ion pressure, A/m i s  the  area-mass 
r a t i o  of the  accelerated body i n  which A is  i t s  e f f ec t ive  area projected 
normal t o  the  sun's rays, and 
The minus s ign a r i s e s  because the  pos i t ive  d i rec t ion  of U i s  defined oppo- 
s i t e l y  t o  t h a t  of F. Since the  quantity p i s  t h e  magnitude of F, t he  

preceding equation i s  usual ly  wr i t ten  i n  the  form 

0 i s  a uni t  vector i n  theAdirect ion t o  t h e  sun. 

- A 

- A 

F = -mT 

The in t ens i ty  of t he  rad ia t ion  pressure var ies  inversely with the  square of t he  
dis tance t o  the  sun s and i s  given by 

2 
P =Po(?) 

where po i s  the  in t ens i ty  a t  t h e  mean earth-sun dis tance so and has approx- 
imately t h e  value 4.65 x 10-5 dyne per square centimeter. 
should be noted t h a t  without su i tab le  modification, equation (1) does not apply 
i n  cases where t h e  s a t e l l i t e  surface may be pa r t ly  re f lec t ive ,  absorptive, and 
transmissive. I n  general, t h e  resu l tan t  force w i l l  not be directed p a r a l l e l  t o  
t h e  sun's rays and i ts  magnitude w i l l  be a l t e r ed  by a f a c t o r  t h a t  depends on 
t h e  physical and o p t i c a l  propert ies  of t h e  s a t e l l i t e .  

(See re f .  9. )  It 

m e  modification f o r  l e n t i c u l a r  configurations.- For t h i s  type of sa te l -  
l i t e ,  it i s  necessary t o  account f o r  t h e  var ia t ion  i n  t h e  magnitude of F t h a t  

5 
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occurs because t h e  e f f ec t ive  area 

o r b i t a l  revolution. The manner i n  
which t h i s  var ia t ion  occurs i s  
i l l u s t r a t e d  i n  f igure  2. If t h e  
sun l i n e  i s  p a r a l l e l  t o  t h e  o rb i t  
plane as shown i n  t h e  sketch, A 
w i l l  o s c i l l a t e  between t h e  c i rcu lar  
a rea  at  points  P and the l e n t i c u l a r  
a rea  at  points  Q with a frequency 
of twice t h e  o r b i t a l  period. 
responding t o  t h i s  var ia t ion  i n  
area, t h e  area-mass r a t i o  var ies  
from 149.66 t o  50.17 cm2/gm. It 
should be noted tha t ,  near one of 

t h e  ea r th ' s  shadow at which t i m e  
t h e  e f fec t ive  cross-sectional area 
presented t o  t h e  sun is zero. For 
t h e  case where t h e  sun l i n e  i s  nor- 
mal t o  t h e  o rb i t  plane, no varia- 
%ion occurs and A remains equal 
t o  t h e  l en t i cu la r  area of points  Q. 

P A changes continually over each 

Q 

Cor- 

P t h e  points  P, t he  l en t i cu le  i s  i n  

t t t t t t t  sun rays 

Figure 2.- Variation of effec- 
t i v e  area over a f u l l  
o r b i t a l  revolution. 

Since t h e  l en t i cu le  i s  a body of revolution, it i s  evident from figure 2 tha t ,  
shadow e f fec t s  being neglected, t h e  var ia t ion  i n  A 
t h e  angle between i t s  symmetry axis and t h e  d i rec t ion  of t h e  sun. 

i s  so le ly  a function of 

The approach used t o  obtain a su i tab le  ana ly t ica l  expression f o r  A i n  
terms of t h e  sun angle u i s  i l l u s t r a t e d  i n  f igu re  3. A l e n t i c u l a r  body may 
be represented mathematically i n  terms of two in te rsec t ing  spheres of radius r 
whose centers are spaced a distance 2d apart  as shown on t h e  l e f t  sketch i n  
f igu re  3. With r and d specified, each half  of t he  l en t i cu le  subtends a 
cent ra l  angle 2%. For t h e  range 0 <= a 5 %, t h e  area A i s  simply t h a t  of 
t he  e l l i p s e  formed by t h e  projection of t he  c i r cu la r  in te rsec t ion  of t he  two 
spheres i n  t h e  d i rec t ion  of t h e  sun's rays as shown on t h e  sketch t o  the  r igh t  
i n  f igure  3. The semi-major and semi-minor axes of t h i s  e l l i p s e  are 

a = r s i n  u0 

and 

b = a cos a 

so  t h a t  i t s  equation i n  rectangular coordinates with t h e  or ig in  a t  i t s  center 
i s  

The area of t h i s  e l l i p s e  i s  

A = m?sin2q, cos a (4) 

6 



< < *  = a = 

t r ans i t i on  t o  t h e  l e n t i c u l a r  
area of points Q i n  f igure  2 
adds crescent-shaped areas t o  
each half  of t h e  e l l i p s e  which 
are bound by equation ( 3 )  and 
t h e  c i r c l e s  

5' For t h e  range 

i 

x2 + (y f k)2 = r2 ( 5 )  

where 
Y 

DirectLon 3f sun's rays k = d s i n  a 

The simultaneous solut ion of 
equations (3)  and ( 5 )  and sub- 
s t i t u t i o n  of d s i n  a for ir 
gives t h e  in te rsec t ion  of these 
curves as 

Figure 3 . -  Geometry of effect ive area of len- 
t i c u l a r  s a t e l l i t e .  

~ cos2a 
s i n  a Y =  

By using these points  and t h e  coordinate axes as integrat ion l i m i t s ,  t h e  f o l -  
lowing expression f o r  A i s  readi ly  obtained by elementary integrat ion methods: 

- x cos + sin-1 
cos a($ - sin-' s i n  a, " >  s i n  a 

i n  which 

x = 

Thus, equations (4 )  and ( 6 )  give t h e  var ia t ion  i n  A for a l l  or ientat ions of 
t h e  s a t e l l i t e  s ince t h e  sun angle i s  i n  e f f ec t  constrained t o  t he  in t e rva l  

0 5 a 5 z. 
by subs t i tu t ing  these r e s u l t s  i n t o  equation (1). 

- 
The desired expression f o r  t h e  var ia t ion  i n  F can now be obtained 

2 
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The Perturbation Equations 

The set of o r b i t a l  elements and the  d i f f e r e n t i a l  equations f o r  t h e i r  ra%es 
of  change given i n  reference 6 were used t o  ca lcu la te  t he  perturbations due t o  
so l a r  radiat ion pressure. These equations may be expressed i n  the  form: 

1 1 
2 - V^ ~ ( z  - 2e cos E + - cos .a 

E s i n  (o - (cos E - e)cos (7) 

- + c o s  dLL) i - =  a F ?f-(sin*E - e cos E + 1) 
d t  d t  e G ( 1  - e cos E)  

J A h  - u QG s i n  E(COS E - 
The quant i t ies  i n  these equations a re  defined i n  the  l i s t  of symbols, and 

those having a geometrical in te rpre ta t ion  a r e  a l so  defined i n  f igure  4. An 
i n e r t i a l  equator ia l  coordinate system with the  o r ig in  at the  ea r th ' s  center  i s  
used as the  prime reference f o r  t h e  s a t e l l i t e  - motion and f o r  the  posi t ion of 
t h e  sun which spec i f ies  t he  d i rec t ion  of F r e l a t i v e  t o  the  s a t e l l i t e  o rb i t .  
I n  t h i s  system t h e  X - a x i s  i s  toward t h e  vernal  equinox, t he  Z-axis i s  along the  
ea r th ' s  spin axis, and t h e  Y-axis i s  taken t o  form an orthogonal system. The 
or ien ta t ion  of t he  o r b i t  r e l a t ive  t o  the  X, Y, Z axes i s  given by the  
angles i, a, and Q, and the  posi t ion of t h e  sun by E: and h as shown i n  
f igu re  4. 
resolving t h e  dis turbing acce lera t ioc  i n t o  components p a r a l l e l  and normal t o  
the  o rb i t  plane. The u n i t  vectorsA P, Q, and 8 a r e  used f o r  t h i s  purpose. 
Reference t o  f igu re  4 showsAthat 
toward t h e  perigee point, R is  normal t o  t he  o rb i t  plane, and Q forms a 

Equations (7) a l so  embody the  frequently advantageous device of 
A 

P i s  directed along the  semi-m$or axis 
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right-handed system. The sca l a r  products appearing i n  equations (7) are given 
by t h e  following relat ionships  obtained from figure 4 by means of trigonometry 

= ?(cos w cos R - cos i s i n  w s i n  a )  

+ :(cos w s i n  R +- cos i s i n  w cos 0 )  

+ i;(sin i s i n  w) 

where 
h 

i, 

h h 

Q = - i ( s i n  w cos R + cos i cos w s i n  R) 
h - j ( s i n  w s i n  R - cos i COS w cos R )  

+ $(s in  i cos u) 

h h 2 = ? ( s in  i s i n  s2) - j ( s i n  i cos R )  + k(cos i) 

i; a r e  un i t  vectors 

Method of Calculating t h e  Solar 

Pres sure Perturbations 

The method of Kryloff- 
Bogoliuboff i s  employed i n  refer- 
ence 6 t o  obtain solut ions t o  
equations (7 ) .  When t h i s  method 
i s  applied, t h e  in tegra t ion  i s  
more conveniently accomplished by 
changing t h e  independent var iable  
from time t o  eccentr ic  anomaly. 
This transformation i s  given by 
t h e  r e l a t ion  

along the  

z 

Y, and Z 

Vehicle 

k 

axes. 

r 
a n d t = - d E  

/ 
x 

~o vernal equinox 

/ msun 

z 

which i s  obtained from t h e  theory 
of unperturbed conic motfon. 
The solut ion of equations (7)  i s  
then accomplished on t h e  d i g i t a l  
computer by means of a fourth- 
order Runge-Kutta procedure i n  
which the  integrat ion s tep  corre- 
sponds t o  a t i m e  i n t e rva l  of Figure 4.- Coordinate system. 
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1 day. 
by using the  values of t h e  eccentr ic  anomaly at the points of e x i t  and en t ry  
i n t o  t h e  shadow region as in tegra t ion  l i m i t s .  

The e f f ec t  of shadowing of t h e  s a t e l l i t e  by t h e  ear th  i s  accounted f o r  

This method i s  not as e a s i l y  applied i n  t h e  case of l e n t i c u l a r  s a t e l l i t e s  - 
because of t h e  var ia t ion  i n  F. Instead of determining an average value of F 
over t h e  illuminated port ion of t h e  o rb i t  and then applying t h e  method 
described, a gomewhat d i f f e ren t  approach w a s  used. This procedure involves 
calculat ing 
aly, using t h e  results i n  equations (7) t o  obtain t h e  corresponding rates of 
change of t h e  o r b i t a l  elements, and then finding t h e  average r a t e s  of change 
over one full o r b i t a l  revolution. The e f f ec t  of shadowing i s  taken i n t o  
account by subtracting out t h e  shadow region i n  t h e  averaging process. 

F by means of equations (4)  and (6) f o r  each degree of mean anom- 

THE NATITRF: OF SOLAR PRES- PERTUFBATIONS 

To f a c i l i t a t e  discussion o f  t h e  resu l t s ,  t h e  processes by which solar-  
rad ia t ion  pressure alters t h e  elements of a satel l i te  o rb i t  a r e  b r i e f l y  
described. It i s  convenient f o r  t h i s  purpose t o  divide t h e  o r b i t a l  elements 
i n t o  two groups. The elements a and e which specify t h e  o rb i t  s i ze  and 
shape form one group, and i t s  or ientat ion elements i, w, and Cl  comprise the  
other.  The s ix th  element i s  t i m e  which spec i f ies  t h e  sa te l l i t e  posi t ion i n  i t s  
o r b i t  and serves as t h e  independent variable.  I n  addition, t he  conditions f o r  
which resonances can occur are a l so  included. 

The Changes i n  Orbit Size and Shape 

The change i n  eccgntricity.-  
The process by which so la r  radia- 
t i o n  pressure changes t h e  eccen- 
t r i c i t y  e can be described with 
t h e  a id  of figure 5 which repre- 
sen ts  an i n i t i a l l y  c i r cu la r  o rb i t  
oriented p a r a l l e l  t o  t h e  sun's rays. 
A s  t h e  s a t e l l i t e  moves away f roh  
t h e  sun i n  the  region of point P, 
so l a r  pressure accelerates  i t s  
motion and thereby causes it t o  
recede t o  a higher a l t i t ude .  
s i t ua t ion  i s  reversed i n  the  vicin- 
i t y  of point A where so l a r  pressure 
decelerates  the  motion, and causes 
t h e  satell i te then t o  seek a lower 
a l t i t ude .  Evidently, t he  continua- 
t i o n  of t h i s  process causes e t o  
increase, and w i l l  c reate  a perigee 

The 

sun rays 

Figure 5.- I l l u s t r a t i o n  of change i n  
eccentr ic i ty .  

10 
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a t  P and an apogee a t  A provided the  sun d i rec t ion  does not change r e l a t ive  t o  
t h e  apsidal  l i n e  PA t h a t  i s  produced normal t o  t h e  sun l i n e .  Thus, t he  
increasing apogee and decreasing perigee heights t h a t  accompany the  change i n  
e r e s u l t s  i n  t r ans l a t ion  of t he  o rb i t  along t h e  l i n e  PA toward A. If the  sun 
posi t ion r e l a t ive  t o  PA of the  perturbed o rb i t  i l l u s t r a t e d  i n  f igure  5 were t o  
be changed by 180°, e would decrease t o  zero and then increase i n  the  manner 
j u s t  described, except t h a t  the  perigee would be created a t  point A.  

A t h i r d  type of behavior i n  which the  net change i n  e per o r b i t a l  revo- 
l u t i o n  i s  zero arises when t h e  apsidal  l i n e  of an e l l i p t i c a l  o rb i t  i s  oriented 
p a r a l l e l  t o  t he  sun direct ion.  
f o r  de/dt i n  equations (7) since U Q i s  zero f o r  t h i s  s i tua t ion .  Thus, 
t h e  change i n  e depends on t h e  or ientat ion of t h e  apsidal  l i n e  r e l a t ive  t o  
t h e  d i rec t ion  of t h e  so l a r  dis turbing force.  Since t h e  apsidal  l i n e  moves with 
respect t o  t h e  sun l i ne ,  except when resonant conditions a re  present, e must 
generally vary i n  a per iodic  manner. The period of t h i s  o sc i l l a t ion  is  evi- 
dently equal t o  t h e  t i m e  required f o r  t he  apsidal  l i n e  t o  ro t a t e  once r e l a t i v e  
t o  t he  sun posit ion.  

ThisAres$t can be infer red  from the  expression 

The e f f ec t  of shadow.- The portion of the  poten t ia l  energy of a s a t e l l i t e  
t h a t  i s  associated with the  solar-radiat ion pressure f i e l d  i s  a function of i t s  
distance from the  sun. (See eq. (2).) When the  s a t e l l i t e  i s  continuously 
illuminated by the  sun, t h e  so l a r  pressure force i s  conservative and no change 
i n  energy occurs over a complete o r b i t a l  revolution. For o rb i t  or ientat ions 
where the  s a t e l l i t e  passes through the  region of t h e  shadow cast  by the  earth,  
t h e  so l a r  pressure force i s  not conservative and a net change i n  energy can 
take place. The s i tua t ions  f o r  which energy changes can occur are i l l u s t r a t e d  
i n  figure 6. 

If the  shadow region i s  located a t  posi t ion A as shown i n  f igure 6, the 
s a t e l l i t e  w i l l  emerge from shadow at  a point fu r the r  from the  sun than the point 
where it entered. Since t h e  so la r  pressure force i s  
zero i n  t h e  shadow region, t he  s a t e l l i t e  gives up an 
amount of po ten t ia l  energy proportional t o  the d i f -  
ference i n  the  distances of t he  t w o  points from t h e  
sun. The opposite behavior occurs i f  t he  shadow 
occurs a t  posi t ion B where t h e  s a t e l l i t e  then gains 
po ten t i a l  energy. N o  change i n  energy occurs f o r  
posi t ions C o r  D since t h e  en t ry  and e x i t  points of 
t h e  shadow region a re  of equal distance f romthe  sun. 
Thus, t he  energy change due t o  shadowing depends on 
t h e  or ien ta t ion  of t he  shadow region r e l a t ive  t o  the  
apsidal  l i n e .  Since t h e  shadow locat ion depends on 
the  posi t ion of t h e  apsidal  l i n e  CD with respect t o  B 

t h e  sun, it i s  evident t h a t  t h e  change i n  energy due Figure 6.- Sketch used i n  
t o  shadow varies  i n  a manner s i m i l a r  t o  t he  eccen- describing change i n  

t r i c i t y  and w i t h  t h e  same period. 

A 

energy due t o  shadowing. 
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The Change i n  Orbit Orientation 

The e f f ec t s  of so l a r  radiat ion pressure on t h e  o rb i t  o r ien ta t ion  elements 
i, cu, and R are s m a l l  i n  most instances.  For given values of a and F, 
equations (7) show that the  rates of change of these  elements depend mainly on 

t h e  eccentr ic i ty .  A s  e increases, t h e  combined e f f ec t  of and 
the long-period terms e cos cu and e s i n  (o can produce noticeable changes i n  
t h e  elements i and 52. The presence of s i n  i i n  t h e  denominator of t h e  

However, t h e  t h i r d  harmonic of t h e  earth's grav i ta t iona l  po ten t ia l  dominates 
t h e  change i n  Ci as i becomes s m a l l  f o r  t h e  area-mass r a t i o s  considered i n  

expression f o r  m/dt can lead t o  l a rge  changes i n  R f o r  small values of i. '1 

Y '  t h i s  study. C 

I n  contrast, t he  occurrence of e as a d iv isor  i n  t h e  expression f o r  
&/at can cause cu t o  change rapidly whenever e becomes s m a l l .  Since t h e  
r a t e  at  which t h e  apsidal  l i n e  moves depends on dw/dt and dn/dt, it i s  c l ea r  
t h a t  cu can have an important e f f ec t  on the  period of a and e. The pres- 
ence of resonances, which are described i n  t h e  next section, can cause s igni f -  
i can t  changesAin ̂ i, cut and 0. When resonant conditions exist, t h e  sca l a r  
products of P, Q, and f? with 0 contain secular  terms. 

Resonances 

The s i tua t ion  depicted i n  figure 5 represents a resonant condition t h a t  can 
eventually destroy t h e  o rb i t .  Resonances occur whenever the  aps ida l  l i n e  main- 
ta ins ,  on t h e  average, a constant or ien ta t ion  r e l a t i v e  t o  t h e  dis turbing force.  
It i s  shown i n  reference 11 t h a t  there  a re  s i x  conditions for which equa- 
t i ons  (7) become resonant. 
r i c  i d e n t i t i p ,  t h e  qxant i t ies  i n  equations (7) t h a t  involve sca l a r  products of 
f;, Q, and R with U may be wr i t ten  

By s t a r t i n g  with equations (8) and using trigonomet- 

6 c 2  2 1 h 
P = cos2 i cos2 f cos(cu + 0 - A) + s in2  f cos(cu + ~i + A)  

cos(c0 - ~i + A)  + sin2 f. cos(co - 0 - 

2 

2 2 

1 1 
2 

+ - s i n  i s i n  E - A) - cos(cu + A) 

( 9 )  

1 

5 

Equations ( 9 )  a re  continued on next page 
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- 1 s i n  i s i n  E sin(cu - A) - sin(w + ~4 
2 i 

- n - A) - cos(co + ~2 + 
2 

3 + - 1 cos i s i n  E - A) - cos(o + A) 2 

A A  u R cos w = + a - A) - sin(w - 51 + ~j 

+ s in2  5 s i n ( o  + n + A) - sin(w - - 
2 1 

c + - 1 cos i s i n  E sin((u + A) - sin(w - 
2 

Hence each expression i n  equations (7) contains s ines  o r  cosines of a l l  s i x  of 
t h e  arguments 

w f R f h  = (& t- h k i ) t  + (uo i: no ( 
f A = (& k R ) t  + (ao f A") 

t If any one of t h e  following condi t ions. is  f u l f i l l e d  

I I. 

11. 

III. G + h - i = OJ 

Equations (11) are continued on nef i  page 



v. 
. .  VI. o , - h = Q  

i t s  corresponding argument i n  equations (10) w i l l  remain constant. 
cases, each expression i n  equations (9) w i l l  contain a secular term involving 
e i t h e r  t h e  s ine or cosine of t he  argument the  rate of change of which vanishes 
i n  accordance with equations (11). Furthermore, it i s  c l ea r  t h a t  t h e  resu l t ing  
resonant behavior w i l l  progress at t h e  maximum r a t e  when t h e  i n i t i a l  values o f ,  
LU, 51, and A result i n  s ine  or cosine terms t h a t  are unity.  A s  indicated i n  
t h e  sect ion describing t h e  change i n  eccentr ic i ty ,  it i s  precisely t h i s  s i tua-  
t i o n  f o r  which t h e  change i n  e due t o  so l a r  radiat ion pressure i s  grea tes t .  
It i s  t o  be emphasized t h a t  it i s  not t h e  conditions f o r  resonance given by 
equations (ll), but t h e  ensuing resonant changes i n  t h e  o r b i t a l  elements t h a t  
are caused by so la r  radiat ion pressure. 

I n  a l l  such 

i 

If the  method of reference 11 is  followed, equations (11) may be used t o  
calculate  t h e  resonant incl inat ions f o r  any combination of a and e. The 
f i r s t -o rde r  approximation used 
purposes. To first order, t h e  
second harmonic of t h e  ea r th ' s  

i n  t h i s  method appears t o  be adequate f o r  most 
time rates of u) and ll are dominated by the  
grav i ta t iona l  po ten t i a l  and are given by 

J cos i *2 

a2(1 - 
The subs t i tu t ion  of these expressions i n t o  equations (11) yie lds  a s e t  of quad- 
r a t i c  equations i n  cos i t h e  roots  of which give t h e  resonant inc l ina t ions .  

RESULTS AND DISCUSSION 

The computational procedure contained i n  t h i s  report  w a s  used t o  obtain 
t i m e  h i s to r i e s  of t h e  s a t e l l i t e ' s  o r b i t a l  elements f o r  a period of 1 year. i 

Numerical data  were generated f o r  seven o r b i t a l  inc l ina t ions  ranging from 0' t o  
1130 t o  determine t h e  e f f ec t  of t he  sun posi t ion r e l a t i v e  t o  the  orb i t  plane and 
t o  examine resonances. All the  calculations were made with an i n i t i a l  eccen- 
t r i c i t y  of 0.001 and an i n i t i a l  a l t i t u d e  of 2,000 naut ica l  miles which i s  con- 
sidered a desirable  a l t i t u d e  f o r  passive communications s a t e l l i t e s .  

I 
i 

The r e su l t s  of t he  study are presented i n  terms of e and LU since t h e  
perturbations i n  t h e  elements a, i, and S l  were found t o  have only a s m a l l  
e f f ec t  on e f o r  t h e  seven cases t h a t  were examined. Data f o r  t he  argument of 
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Resonant 
condition 

i 

Rate of 
of long-perid 

argument 

Vdues of ra tes  of change of long-perid argument i n  radians per day for - 

i = 0 . 5 ~  

perigee are included because of t h e  influence of CD on t h e  period of t h e  
osc i l l a t ion  i n  e as described i n  t h e  sect ion on perturbations.  Resonances 
are ,discussed i n  terms of t a b l e  I which contains t h e  rates of t h e  s i x  arguments 
given by equations (10) f o r  each of t h e  seven o r b i t a l  incl inat ions.  
en t r i e s  i n  t ab le  I serve t o  indicate  t h e  resonant tendencies i n  each case. 
Finally, results from two of t h e  l e n t i c u l a r  runs are compared on an equal area- 
m a s s  r a t i o  bas i s  w i t h  corresponding data  f o r  a sphere. 

The 

I 

I11 I1 I V  

V 

V I  

TABLE I.- RESONANT TENDENCIES OF LONG-PERIOD ARGUMEN'S 

E d e r l i n e d  values indicate resonant condition most closely approacheq 

~ 

; + n + i  0.0422 ::::;E & - s i + i  .1222 

& + i  
& - i  

Case B: 
i = E  

0.0412 

.0711 

.0068 

* 1055 

- 07% 

- 0390 

Case C: 
i = E + 100 

0.0314 

* 0554 

-. 0030 

.@98 

.0506 

.0262 
~~ 

Case D: 
i = E + 300 

O.OOg9 

.0172 

- .0245 

.0516 

0307 

- .0037 

Case E: 
i = 700 

-0.0032 

- .0296 

- -0376 

.0048 

. 0008 

- .O336 

Case F: 
t = E + 60° 

-0.0020 

- .0125 

- -0364 

. o a 9  

0099 

- .0245 

The Changes i n  Eccentr ic i ty  and Argument of Perigee 

Case G: 
t = E + 9oC 

0.0275 

- .0350 

- .0069 

- .0004 

.02@ 

.0136 

The t i m e  h i s t o r i e s  of e a r e  p lo t ted  i n  f igure  7 f o r  each of t h e  seven 
o r b i t a l  incl inat ions.  
amplitude, long-period var ia t ion  t h a t  i s  obtained f o r  spherical  configurations. 
These r e su l t s  indicate  t h a t  t h e  minimum amplitude of occurs f o r  an incl ina-  
t i o n  i n  t h e  v i c in i ty  of 700. However, even i n  t h i s  case e i s  la rge  enough t o  
a f fec t  t he  s t a b i l i t y  of t h e  s a t e l l i t e ' s  a t t i t u d e  motion. 

Figure 8 contains t h e  corresponding p lo t s  of t h e  var ia t ion  of o with t. 
Comparisons of these curves with those of f igure  7 ind ica te  t h a t  
a uniform manner when e i s  not near zero. However, t h e  last of equations (7) 
predic t s  tha t ,  i f  t h e  eccent r ic i ty  i s  s m a l l ,  l a rge  net var ia t ions i n  CD per  
o r b i t a l  revolution can occur unless t h e  sun i s  normal t o  t h e  apsidal  l i ne .  The 
r e s u l t s  f o r  i = 700 confirm t h i s  prediction. Figure 7 shows t h a t  e 
decreases t o  appraximately 0.017 i n  t h e  region of t h e  167-day point on t h e  p lo t .  
Accordingly, t h e  slope of CD i s  la rge  a t  t h e  corresponding point on f igure 8. 
I n  t h e  v i c in i ty  of 274 days, e reaches a lower minimum of about 0.001, and 
t h e  slope of LU becomes nearly ve r t i ca l .  A similar la rge  change i n  CD does 
not occur at  the  starting point because t h e  i n i t i a l  conditions were chosen such 
t h a t  t h e  sun w a s  normal t o  t h e  apsidal  l i n e .  

All these curves exhibi t  t h e  same type of large- 

e 

(See ref .  4 . )  

o var ies  i n  , 

i 

To obtain physically correct 
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Figure 7.- Time histories of eccentricity. 
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Time, t, days 

Figure 8. - Time histories of argument of perigee. 
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resu l t s ,  it i s  important t o  choose i n i t i a l  conditions so t h a t  e does not 
decrease t o  zero before increasing s ince t h e  resu l t ing  s m a l l  d iv i sor  would 
inva l ida te  equations (7). 

Resonances 

The resonant tendencies of a given o rb i t  can be e a s i l y  iden t i f i ed  by tabu- 
lating the left-hand members of equations (11) as w a s  done i n  reference 12. 
This information w a s  computed f o r  t he  seven cases and i s  presented i n  t a b l e  I. 
The en t r i e s  i n  t h i s  t a b l e  are expressed i n  radians per  day. For each incl ina-  
t ion,  t h e  resonant condition most closely approached i s  indicated by the  s m a l l -  
est entry which i s  underlined i n  t h e  tab le .  

< I 

I 

Although t h e  tabular  arrangement i s  useful, t he  tendencies toward reso- 
nance can be more c l ea r ly  i l l u s t r a t e d  by p lo t t i ng  t h e  rates of change of equa- 
t i ons  (10) as functions of o r b l t a l  incl inat ion.  Figure 9 presents t h i s  infor-  
mation f o r  t he  i n i t i a l  values of a l t i t u d e  and eccent r ic i ty  used i n  the  study. 
The resonant inc l ina t ions  f o r  ail1 s ix  conditions are e a s i l y  located since t h e  
points  where each curve passes through zero a re  obviously t h e  roots  of equa- 

I 
;rad? 

Inclination, i, deg 

Figure 9.- Variation of resonant conditions with 
o r b i t a l  incl inat ion.  Roman numerals indicate  
resonant conditions. 

t i o n s  (11). Thus these 
curves not only ind ica te  
t h e  resonant tendencies f o r  
a given o rb i t  incl inat ion,  
but a l so  provide a means of 
ident i fying which of t he  
s i x  resonant conditions i s  
most closely approached. 

A s  mentioned ea r l i e r ,  
I 

I 
two of t he  seven o r b i t a l  
inc l ina t ions  were chosen t o  
y ie ld  resonances. The two 
cases selected for t h i s  
purpose a re  cases C and G. 
Reference t o  t a b l e  I and 
f igu re  9 shows t h a t  case C 
approaches the  resonance 
given by condition I11 of 
equations (11). The prox- 
imity t o  condition I11 i s  
re f lec ted  by t h e  large- ’, 

amplitude long-period 
var ia t ion  i n  curve C of , 
f igure  7. Similar r e su l t s  
a r e  obtained f o r  case G 
where the  behavior of 
curve G i s  dominated by 
resonant condition I V .  

Cases D, E, and F were 
not intended t o  correspond 
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t o  resonant conditions; however, inspection of t a b l e  I shows t h a t  all th ree  a re  
nearly resonant. Table I a l so  indicates  t h a t  each of these three cases i s  near 
more than one resonant condition at  t h e  same t i m e .  This s i tua t ion  i l l u s t r a t e s  
how the  dominant resonant condition changes from one t o  another as the  o r b i t a l  
inc l ina t ion  i s  varied. Figure 9 indicates  t h a t  these changes can occur f o r  
r e l a t ive ly  s m a l l  increments i n  i when t h e  o r b i t a l  inc l ina t ion  i s  between 600 
and 120°. The curves i n  f igure 9 not only i l lustrate  why "bundles of reso- 
nances" occur f o r  nearly polar orbi ts ,  but a l so  ind ica te  which of t h e  s i x  
resonant conditions causes each such bundle. 

f 

Comparison of Lenticular and Spherical  Configurations i * '  

For perfec t ly  absorptive bodies, t h e  difference i n  the  force exerted by 
so la r  radiat ion pressure on a l en t i cu le  and on a sphere i s  due t o  the  varia- 
t i o n  i n  the  e f fec t ive  area of t h e  len t icu le .  A comparison of the  o r b i t a l  
eccen t r i c i t i e s  f o r  t h e  two configurations i s  presented i n  f igure  10 f o r  cases B 
and E, respectively.  U s i n g  an area-mass r a t i o  equal t o  t h e  maximum value f o r  
t h e  lent icule ,  data  f o r  cases B and E were calculated f o r  t h e  spherical  con- 
f igurat ion.  Comparisons of t h e  two configurations indicate  t h a t  the  osc i l la -  
t i ons  i n  e have nearly t h e  same periods and d i f f e r  mainly i n  t h e i r  amplitudes 
f o r  both cases B and E. On t h e  bas i s  of these resu l t s ,  cases B and E were 
rerun for t h e  spherical  configuration using area-mass r a t i o s  equal t o  t h e  aver- 
age values f o r  t h e  l e n t i c u l a r  configuration over a 1-year period. 
a r e  presented i n  f igure.10.  
agree f a i r l y  well  when t h e  two configurations are compared on an equal area- 
mass r a t i o  basis .  

These data  
Figure 10 shows t h a t  t he  time h i s t o r i e s  of e 

Although t h i s  approximation y ie lds  good agreement, it assumes a constant 
: value f o r  t he  average area-mass r a t i o  which ignores a long-period var ia t ion  

t h a t  a r i s e s  because of t h e  change i n  the  o rb i t  o r ien ta t ion  r e l a t ive  t o  t h e  sun 

year w i l l  d i f f e r  from t h a t  f o r  some other day s o  t h a t  an average area-mass 
r a t i o  based on a period of a year w i l l  not represent t he  t r u e  value over some 
portions of t he  1-year period with suf f ic ien t  accuracy. Therefore, i f  t h e  
average area-mass r a t i o  i s  determined a t  more frequent in te rva ls  t o  account f o r  
t h i s  long-period var ia t ion,  t h e  curves i n  f igure  10 should agree more closely.  
Another source of discrepancy not accounted f o r  i n  t h e  averaging process i s  t h e  
f a c t  t h a t  t h e  energy change due t o  shadowing i s  a l s o  affected by t h e  long- 
period var ia t ion  just  mentioned. However, t h i s  e f f ec t  can be ignored since i t s  
influence on e i s  s m a l l .  Thus, t h e  pr inc ipa l  pa r t  of t h e  var ia t ion  i n  t h e  
e f fec t ive  area-mass r a t i o  of a l e n t i c u l a r  s a t e l l i t e  appears t o  behave much l i k e  
a short-period term i n  t h e  dis turbing function. 

1 direct ion.  For t h i s  reason, t he  average area-mass r a t i o  f o r  a given day i n  t h e  

i 
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Figure 10.- Comparison of eccen t r i c i t i e s  f o r  a l en t i cu la r  and a spherical  satellite. 
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CONCLUDING REMARKS 

A study of t he  orbital .  motion of a gravity-gradient-oriented l en t i cu la r  
s a t e l l i t e  has indicated t h a t  solar-radiat ion pressure a l t e r s  the  o r b i t a l  eccen- 
t r i c i t i e s  of l e n t i c u l a r  and spherical. configurations i n  much the  saae manner. 
The following remarks a re  s t a t ed  on the  bas i s  of t he  r e s u l t s  obtained: 

1. The perturbations due t o  so l a r  rad ia t ion  pressure a re  su f f i c i en t ly  
severe t h a t  a means of control l ing the' eccent r ic i ty  appears necessary f o r  len- 
t i c u l a r  s a t e l l i t e s  unless t he  problem can be subs tan t ia l ly  avoided through the  
use of mesh mater ia ls  o r  some other a l te rna t ive .  

2. The pr inc ipa l  var ia t ion  i n  the  e f f ec t ive  area-mass r a t i o  of a lent icu-  
lar  s a t e l l i t e  i s  due t o  the  short-term osc i l l a t ion  i n  i t s  or ien ta t ion  r e l a t i v e  
t o  the  sun's rays and appears t o  behave much l i k e  a short-period t e rm i n  t h e  
dis turbing function which tends t o  average out.  

3 .  Good agreement with r e s u l t s  f o r  a sphere, using an area-mass r a t i o  
equal t o  the  average value f o r  t he  l e n t i c u l a r  configuration, i s  obtained pro- 
vided the  time period over which the  area-mass r a t i o  i s  averaged i s  small 
enough t o  neglect long-period var ia t ions  i n  the  e f fec t ive  area of the  s a t e l l i t e .  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., December 3, 1964. 
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